skip to main content


Search for: All records

Creators/Authors contains: "Viola, Lorenza"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We introduce and experimentally demonstrate a quantum sensing protocol to sample and reconstruct the autocorrelation of a noise process using a single-qubit sensor under digital control modulation. This Walsh noise spectroscopy method exploits simple sequences of spin-flip pulses to generate a complete basis of digital filters that directly sample the power spectrum of the target noise in the sequency domain, from which the autocorrelation function in the time domain, as well as the power spectrum in the frequency domain, can be reconstructed using linear transformations. Our method, which can also be seen as an implementation of frame-based noise spectroscopy, solves the fundamental difficulty in sampling continuous functions with digital filters by introducing a transformation that relates the arithmetic and logical time domains. In comparison to standard, frequency-based dynamical-decoupling noise spectroscopy protocols, the accuracy of our method is only limited by sampling and discretization in the time domain and can be easily improved, even under limited evolution time due to decoherence and hardware limitations. Finally, we experimentally reconstruct the autocorrelation function of the effective magnetic field produced by the nuclear-spin bath on the electronic spin of a single nitrogen-vacancy center in diamond, discuss practical limitations of the method, and avenues to further improve the reconstruction accuracy.

     
    more » « less
  2. Abstract

    We study the estimation precision attainable by entanglement-enhanced Ramsey interferometry in the presence of spatiotemporally correlated non-classical noise. Our analysis relies on an exact expression of the reduced density matrix of the qubit probes under general zero-mean Gaussian stationary dephasing, which is established through cumulant-expansion techniques and may be of independent interest in the context of non-Markovian open dynamics. By continuing and expanding our previous work (Beaudoinet al2018Phys. Rev.A98020102(R)), we analyze the effects of anon-collectivecoupling regime between the qubit probes and their environment, focusing on two limiting scenarios where the couplings may take only two or a continuum of possible values. In the paradigmatic case of spin–boson dephasing noise from a thermal environment, we find that it is in principle possible to suppress,on average, the effect of spatial correlations byrandomizing the location of the probes, as long as enough configurations are sampled where noise correlations are negative. As a result, superclassical precision scaling is asymptotically restored for initial entangled states, including experimentally accessible one-axis spin-squeezed states.

     
    more » « less
  3. Abstract

    Unlike their fermionic counterparts, the dynamics of Hermitian quadratic bosonic Hamiltonians are governed by a generally non-Hermitian Bogoliubov-de Gennes effective Hamiltonian. This underlying non-Hermiticity gives rise to adynamically stableregime, whereby all observables undergo bounded evolution in time, and adynamically unstableone, whereby evolution is unbounded for at least some observables. We show that stability-to-instability transitions may be classified in terms of a suitablygeneralizedPTsymmetry, which can be broken when diagonalizability is lost at exceptional points in parameter space, but also when degenerate real eigenvalues split off the real axis while the system remains diagonalizable. By leveraging tools from Krein stability theory in indefinite inner-product spaces, we introduce an indicator of stability phase transitions, which naturally extends the notion of phase rigidity from non-Hermitian quantum mechanics to the bosonic setting. As a paradigmatic example, we fully characterize the stability phase diagram of a bosonic analogue to the Kitaev–Majorana chain under a wide class of boundary conditions. In particular, we establish a connection between phase-dependent transport properties and the onset of instability, and argue that stable regions in parameter space become of measure zero in the thermodynamic limit. Our analysis also reveals that boundary conditions that support Majorana zero modes in the fermionic Kitaev chain are precisely the same that support stability in the bosonic chain.

     
    more » « less
  4. null (Ed.)