skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Viola, Lorenza"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Tight bosonic analogs of free-fermionic symmetry-protected topological phases, and their associated edgelocalized excitations, have long evaded the grasp of condensed-matter and AMO physics. In this paper, building on our initial exploration [Phys. Rev. Lett. 127, 245701 (2021)], we identify a broad class of quadratic bosonic systems subject to Markovian dissipation that realize tight bosonic analogs of the Majorana and Dirac edge modes characteristic of topological superconductors and insulators, respectively. To this end, we establish a general framework for topological metastability for these systems, by leveraging pseudospectral theory as the appropriate mathematical tool for capturing the nonnormality of the Lindbladian generator. The resulting dynamical paradigm, which is characterized by both a sharp separation between transient and asymptotic dynamics and a nontrivial topological invariant, is shown to host edge-localized modes, which we dub Majorana and Dirac bosons. Generically, such modes consist of one conserved mode and a canonically conjugate generator of an approximate phase-space translation symmetry of the dynamics. The general theory is exemplified through several representative models exhibiting the full range of exotic boundary physics that topologically metastable systems can engender. In particular, we explore the extent to which Noether’s theorem is violated in this dissipative setting and the way in which certain symmetries can nontrivially modify the edge modes. Notably, we also demonstrate the possibility of anomalous parity dynamics for a bosonic cat state prepared in a topologically metastable system, whereby an equal distribution between even and odd parity sectors is sustained over a long transient. For both Majorana and Dirac bosons, observable multitime signatures in the form of anomalously long-lived quantum correlations and divergent zero-frequency power spectral peaks are proposed and discussed in detail. Our results point to a paradigm for symmetry-protected topological physics in free bosons, embedded deeply in the long-lived transient regimes of metastable dynamics. 
    more » « less
  2. Abstract We study the estimation precision attainable by entanglement-enhanced Ramsey interferometry in the presence of spatiotemporally correlated non-classical noise. Our analysis relies on an exact expression of the reduced density matrix of the qubit probes under general zero-mean Gaussian stationary dephasing, which is established through cumulant-expansion techniques and may be of independent interest in the context of non-Markovian open dynamics. By continuing and expanding our previous work (Beaudoinet al2018Phys. Rev.A98020102(R)), we analyze the effects of anon-collectivecoupling regime between the qubit probes and their environment, focusing on two limiting scenarios where the couplings may take only two or a continuum of possible values. In the paradigmatic case of spin–boson dephasing noise from a thermal environment, we find that it is in principle possible to suppress,on average, the effect of spatial correlations byrandomizing the location of the probes, as long as enough configurations are sampled where noise correlations are negative. As a result, superclassical precision scaling is asymptotically restored for initial entangled states, including experimentally accessible one-axis spin-squeezed states. 
    more » « less
  3. null (Ed.)